Part Number Hot Search : 
MPC3XXWX A201DL 2SC5888 PKS30A D2095 A201DL MBT440 EPT7010M
Product Description
Full Text Search
 

To Download A2T21H140-24SR3 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  a2t21h140--24sr3 1 rf device data nxp semiconductors rf power ldmos transistor n--channel enhancement--mode lateral mosfet this 36 w asymmetrical doherty rf power ldmos transistor is designed for cellular base station applications covering the frequency range of 2110 to 2170 mhz. 2100 mhz ? typical doherty single--carrier w--cdma performance: v dd =28vdc, i dqa = 350 ma, v gsb =0.5vdc,p out = 36 w avg., input signal par = 9.9 db @ 0.01% probability on ccdf. frequency g ps (db) ? d (%) output par (db) acpr (dbc) 2110 mhz 17.4 53.1 6.9 ?30.2 2140 mhz 17.5 53.3 6.8 ?31.4 2170 mhz 17.5 53.0 6.7 ?32.1 features ? advanced high performance in--package doherty ? greater negative gate--source voltage r ange for improved class c operation ? designed for digital predistorti on error corre ction systems document number: a2t21h140--24s rev. 0, 03/2017 nxp semiconductors technical data 2110?2170 mhz, 36 w avg., 28 v airfast rf power ldmos transistor a2t21h140--24sr3 ni--780s--4l2l (top view) rf outa /v dsa rf outb /v dsb rf ina /v gsa rf inb /v gsb 6 3 15 24 carrier peaking figure 1. pin connections vbw b (1) 1. device cannot operate with v dd current supplied through pin 3 and pin 6. vbw a (1) ? 2017 nxp b.v.
2 rf device data nxp semiconductors a2t21h140--24sr3 table 1. maximum ratings rating symbol value unit drain--source voltage v dss ?0.5, +65 vdc gate--source voltage v gs ?6.0, +10 vdc operating voltage v dd 32, +0 vdc storage temperature range t stg ?65 to +150 ? c case operating temperature range t c ?40 to +150 ? c operating junction temperature range (1,2) t j ?40 to +225 ? c table 2. thermal characteristics characteristic symbol value (2,3) unit thermal resistance, junction to case case temperature 77 ? c, 36 w avg., w--cdma, 28 vdc, i dqa = 350 ma, v gsb = 0.5 vdc, 2140 mhz r ? jc 0.45 ? c/w table 3. esd protection characteristics test methodology class human body model (per jesd22--a114) 2 charge device model (per jesd22--c101) c2 table 4. electrical characteristics (t a =25 ? c unless otherwise noted) characteristic symbol min typ max unit off characteristics (4) zero gate voltage drain leakage current (v ds =65vdc,v gs =0vdc) i dss ? ? 10 ? adc zero gate voltage drain leakage current (v ds =32vdc,v gs =0vdc) i dss ? ? 1 ? adc gate--source leakage current (v gs =5vdc,v ds =0vdc) i gss ? ? 1 ? adc on characteristics -- side a (4) gate threshold voltage (v ds =10vdc,i d =70 ? adc) v gs(th) 0.8 1.2 1.6 vdc gate quiescent voltage (v dd =28vdc,i da = 350 madc, measured in functional test) v gsa(q) 1.4 1.8 2.2 vdc drain--source on--voltage (v gs =10vdc,i d =0.7adc) v ds(on) 0.1 0.2 0.3 vdc on characteristics -- side b (4) gate threshold voltage (v ds =10vdc,i d = 100 ? adc) v gs(th) 0.8 1.2 1.6 vdc drain--source on--voltage (v gs =10vdc,i d =1.0adc) v ds(on) 0.1 0.2 0.3 vdc 1. continuous use at maximum temperature will affect mttf. 2. mttf calculator available at http://www.nxp.com/rf/calculators . 3. refer to an1955 , thermal measurement methodology of rf power amplifiers. go to http://www.nxp.com/rf and search for an1955. 4. each side of device measured separately. (continued)
a2t21h140--24sr3 3 rf device data nxp semiconductors table 4. electrical characteristics (t a =25 ? c unless otherwise noted) (continued) characteristic symbol min typ max unit functional tests (1,2) (in nxp doherty test fixture, 50 ohm system) v dd =28vdc,i dqa = 350 ma, v gsb =0.5vdc,p out =36wavg., f = 2110 mhz, single--carrier w--cdma, iq magnitude clippi ng, input signal par = 9.9 db @ 0.01% probability on ccdf. acpr measured in 3.84 mhz channel bandwidth @ ? 5mhzoffset. power gain g ps 16.7 17.4 19.7 db drain efficiency ? d 50.1 53.1 ? % output peak--to--average ratio @ 0.01% probability on ccdf par 6.4 6.9 ? db adjacent channel power ratio acpr ? ?30.2 ?26.6 dbc load mismatch (2) (in nxp doherty test fixture, 50 ohm system) i dqa = 350 ma, v gsb = 0.5 vdc, f = 2140 mhz vswr 10:1 at 32 vdc, 200 w cw output power (3 db input overdrive from 120 w cw rated power) no device degradation typical performance (2) (in nxp doherty test fixture, 50 ohm system) v dd =28vdc,i dqa = 350 ma, v gsb = 0.5 vdc, 2110?2170 mhz bandwidth p out @ 3 db compression point (3) p3db ? 169 ? w am/pm (maximum value measured at the p3db compression point across the 2110?2170 mhz bandwidth) ? ? ?23 ? ? vbw resonance point (imd third order intermodulation inflection point) vbw res ? 140 ? mhz gain flatness in 60 mhz bandwidth @ p out =36wavg. g f ? 0.18 ? db gain variation over temperature (?30 ? cto+85 ? c) ? g ? 0.008 ? db/ ? c output power variation over temperature (?30 ? cto+85 ? c) ? p1db ? 0.004 ? db/ ? c table 5. ordering information device tape and reel information package a2t21h140--24sr3 r3 suffix = 250 units, 44 mm tape width, 13--inch reel ni--780s--4l2l 1. part internally matched both on input and output. 2. measurements made with device in an a symmetrical doherty configuration. 3. p3db = p avg + 7.0 db where p avg is the average output power measured using an uncli pped w--cdma single--carrier input signal where output par is compressed to 7.0 db @ 0.01% probability on ccdf.
4 rf device data nxp semiconductors a2t21h140--24sr3 figure 2. a2t21h140--24sr3 test circuit component layout cut out area r1 z1 c19 c6 c1 c16 c15 c14 c17 c24 c21 c23 r5 c3 c2 c9 r2 r3 c4 c5 c18 d86183 c22 c13 c20 c12 c11 r4 c8 c10 c7 c p v gga v dda v ddb v ggb a2t21h140--24s rev. 3 table 6. a2t21h140--24sr3 test circuit component designations and values part description part number manufacturer c1, c12, c13, c14, c16, c23 10 ? f chip capacitor c5750x7s2a106m tdk c2, c4, c7, c11, c15, c19, c22 10 pf chip capacitor atc600f100jt250xt atc c3 1.6 pf chip capacitor atc600f1r6bt250xt atc c5, c10, c20 0.3 pf chip capacitor atc600f0r3bt250xt atc c6 0.1 pf chip capacitor atc600f0r1bt250xt atc c8 0.7 pf chip capacitor atc600f0r7bt250xt atc c9 0.2 pf chip capacitor atc600f0r2bt250xt atc c17, c24 220 ? f, 50 v electrolytic capacitor 227cks050m illinois capacitor c18 9.1 pf chip capacitor atc600f9r1bt250xt atc c21 0.4 pf chip capacitor atc600f0r4bt250xt atc r1 50 ?? 4 w chip resistor c10a50z4 anaren r2, r5 20 k ?? 1/4 w chip resistor crcw120620k0jnea vishay r3, r4 5.1 ?? 1/4 w chip resistor crcw12065r10fkea vishay z1 2000--2300 mhz band, 90 ? , 5 db directional coupler x3c21p1--05s anaren pcb rogers ro4350b, 0.020 ? , ? r =3.66 d86183 mtl
a2t21h140--24sr3 5 rf device data nxp semiconductors typical characteristics ? 2110?2170 mhz 2060 acpr f, frequency (mhz) figure 3. single--carrier output peak--to--average ratio compression (parc) broadband performance @ p out = 36 watts avg. 17.8 ?34 53.8 53.6 53.4 53.2 ?24 ?26 ?28 ?30 ? d , drain efficiency (%) ? d g ps , power gain (db) 17.6 17.4 17.2 2080 2100 2120 2140 2160 2180 2200 2220 53.0 ?32 acpr (dbc) parc figure 4. intermodulation distortion products versus two--tone spacing two--tone spacing (mhz) 10 ?70 ?30 ?40 ?60 1 100 imd, intermodulatio n distortion (dbc) ?50 im5--u im5--l im7--u figure 5. output peak--to--average ratio compression (parc) versus output power p out , output power (watts) ?1 ?3 20 0 ?2 ?4 output compression at 0.01% probability on ccdf (db) 10 30 40 60 35 65 60 55 50 45 40 ? d ? drain efficiency (%) ?1 db = 16 w 50 ? d acpr parc acpr (dbc) ?36 ?24 ?26 ?28 ?32 ?30 ?34 18.0 g ps , power gain (db) 17.8 17.6 17.4 17.2 17.0 16.8 g ps ?2 db = 25 w parc (db) ?3.6 ?2.8 ?3.0 ?3.2 ?3.8 ?5 g ps im3--l ?3.4 200 im3--u v dd =28vdc,p out = 12 w (pep), i dqa = 350 ma v gsb =0.5vdc 17.9 17.7 17.5 17.3 17.1 17.0 16.9 input signal par = 9.9 db @ 0.01% pr obabilit y on ccdf v dd =28vdc,p out =36w(avg.),i dqa = 350 ma, v gsb =0.5vdc single--carrier w--cdma, 3.84 mhz channel bandwidth im7--l v dd =28vdc,i dqa = 350 ma, v gsb = 0.5 vdc, f = 2140 mhz ?20 two--tone measurements (f1 + f2)/2 = center frequency of 2140 mhz ?6 ?3 db = 35 w single--carrier w--cdma, 3.84 mhz channel bandwidth input signal par = 9.9 d b @ 0.01% pr obabilit y on ccdf
6 rf device data nxp semiconductors a2t21h140--24sr3 typical characteristics ? 2110?2170 mhz 1 acpr p out , output power (watts) avg. figure 6. single--carrier w--cdma power gain, drain efficiency and acpr versus output power ?20 ?30 10 22 5 65 55 45 35 25 ? d , drain efficiency (%) g ps , power gain (db) 20 18 10 100 200 15 0 acpr (dbc) 16 14 12 ?10 ?40 ?50 ?60 figure 7. broadband frequency response 8 20 f, frequency (mhz) v dd =28vdc p in =0dbm i dqa = 350 ma v gsb =0.5vdc 16 14 12 gain (db) 18 10 1800 1900 2000 2100 2200 2300 2400 2500 2600 gain 2110 mhz input signal par = 9.9 d b @ 0.01% pr obabilit y on ccdf g ps 2140 mhz 2170 mhz 2110 mhz 2170 mhz 2140 mhz 2170 mhz 2140 mhz 2110 mhz 6 4 ? d v dd =28vdc,i dqa = 350 ma, v gsb =0.5vdc single--carrier w--cdma, 3.84 mhz channel bandwidth
a2t21h140--24sr3 7 rf device data nxp semiconductors table 7. carrier side load pull performance ? maximum power tuning v dd =28vdc,i dqa = 355 ma, pulsed cw, 10 ? sec(on), 10% duty cycle f (mhz) z source ( ? ) z in ( ? ) max output power p1db z load (1) ( ? ) gain (db) (dbm) (w) ? d (%) am/pm ( ? ) 2110 11.6?j15.5 10.4 + j14.9 5.77 ? j12.5 19.2 48.8 76 53.7 ?16 2140 15.8 ? j15.3 13.7 + j15.3 5.77 ? j10.6 19.3 48.8 76 55.6 ?17 2170 19.4 ? j11.9 17.8 + j13.4 5.88 ? j11.2 19.2 48.8 77 55.6 ?16 f (mhz) z source ( ? ) z in ( ? ) max output power p3db z load (2) ( ? ) gain (db) (dbm) (w) ? d (%) am/pm ( ? ) 2110 11.6?j15.5 11.9 + j16.0 5.74 ? j12.6 17.2 49.6 91 55.6 ?21 2140 15.8 ? j15.3 16.2 + j15.8 5.91 ? j12.0 17.1 49.6 91 56.5 ?22 2170 19.4 ? j11.9 21.0 + j12.6 6.02 ? j12.4 17.0 49.6 92 56.5 ?21 (1) load impedance for optimum p1db power. (2) load impedance for optimum p3db power. z source = measured impedance presented to the input of th e device at the package reference plane. z in = impedance as measured from gate contact to ground. z load = measured impedance presented to the output of the device at the package reference plane. table 8. carrier side load pull performance ? maximum efficiency tuning v dd =28vdc,i dqa = 355 ma, pulsed cw, 10 ? sec(on), 10% duty cycle f (mhz) z source ( ? ) z in ( ? ) max drain efficiency p1db z load (1) ( ? ) gain (db) (dbm) (w) ? d (%) am/pm ( ? ) 2110 11.6?j15.5 9.85 + j17.0 11.9 ? j3.16 22.8 46.2 42 66.1 ?28 2140 15.8 ? j15.3 13.9 + j17.0 9.84 ? j5.25 21.9 47.1 52 66.4 ?25 2170 19.4 ? j11.9 18.9 + j15.3 9.56 ? j4.82 22.0 47.0 50 66.7 ?26 f (mhz) z source ( ? ) z in ( ? ) max drain efficiency p3db z load (2) ( ? ) gain (db) (dbm) (w) ? d (%) am/pm ( ? ) 2110 11.6?j15.5 11.2 + j17.5 10.5 ? j5.83 20.1 47.8 60 66.2 ?33 2140 15.8 ? j15.3 15.8 + j18.3 8.46 ? j5.24 19.7 47.9 62 67.1 ?36 2170 19.4 ? j11.9 22.0 + j15.6 8.08 ? j5.38 19.6 47.9 62 67.4 ?35 (1) load impedance for optimum p1db efficiency. (2) load impedance for optimum p3db efficiency. z source = measured impedance presented to the input of th e device at the package reference plane. z in = impedance as measured from gate contact to ground. z load = measured impedance presented to the output of the device at the package reference plane. input load pull tuner and test circuit device under test z source z in z load output load pull tuner and test circuit
8 rf device data nxp semiconductors a2t21h140--24sr3 p1db ? typical carrier side load pull contours ? 2140 mhz imaginary ( ? ) 2 ? 2 real ( ? ) 4 ?4 ?6 ?8 ?10 ?12 ?14 ?16 6 8 10 12 14 16 note: = maximum output power = maximum drain efficiency p e gain drain efficiency linearity output power figure 8. p1db load pull output power contours (dbm) figure 9. p1db load pull efficiency contours (%) figure 10. p1db load pull gain contours (db) figure 11. p1db load pull am/pm contours ( ? ) p e 48.5 47 46.5 48 47.5 46 45.5 45 imaginary ( ? ) 2 ? 2 real ( ? ) 4 ?4 ?6 ?8 ?10 ?12 ?14 ?16 6 8 10 12 14 16 imaginary ( ? ) 2 ?2 real ( ? ) 4 ?4 ?6 ?8 ?10 ?12 ?14 ?16 6 8 10 12 14 16 imaginary ( ? ) 2 ?2 real ( ? ) 4 ?4 ?6 ?8 ?10 ?12 ?14 ?16 6 8 10 12 14 16 48 47.5 47 64 54 52 56 58 66 62 p 60 50 e 22.5 19 19.5 p e 22 21.5 21 20.5 20 p e ?16 ?20 ?18 ?22 ?24 ?30 ?28 ?26
a2t21h140--24sr3 9 rf device data nxp semiconductors p3db ? typical carrier side load pull contours ? 2140 mhz note: = maximum output power = maximum drain efficiency p e gain drain efficiency linearity output power figure 12. p3db load pull output power contours (dbm) figure 13. p3db load pull efficiency contours (%) figure 14. p3db load pull gain contours (db) figure 15. p3db load pull am/pm contours ( ? ) imaginary ( ? ) 2 ? 2 real ( ? ) 4 ?4 ?6 ?8 ?10 ?12 ?14 ?16 6 8 10 12 14 16 imaginary ( ? ) 2 ? 2 real ( ? ) 4 ?4 ?6 ?8 ?10 ?12 ?14 ?16 6 8 10 12 14 16 imaginary ( ? ) 2 ?2 real ( ? ) 4 ?4 ?6 ?8 ?10 ?12 ?14 ?16 6 8 10 12 14 16 imaginary ( ? ) 2 ?2 real ( ? ) 4 ?4 ?6 ?8 ?10 ?12 ?14 ?16 6 8 10 12 14 16 45.5 46.5 47 47.5 48 49.5 p e 48.5 49 49 48.5 48 46 60 62 64 58 66 56 54 52 e p p e 17.5 19.5 18.5 18 19 20.5 20 17 16.5 p e ?26 ?22 ?20 ?30 ?32 ?24 ?34 ?28 ?36
10 rf device data nxp semiconductors a2t21h140--24sr3 table 9. peaking side load pull performance ? maximum power tuning v dd =28vdc,v gsb = 0.5 vdc, pulsed cw, 10 ? sec(on), 10% duty cycle f (mhz) z source ( ? ) z in ( ? ) max output power p1db z load (1) ( ? ) gain (db) (dbm) (w) ? d (%) am/pm ( ? ) 2110 10.2 ? j17.7 11.6 + j18.7 5.96 ? j12.8 14.5 50.5 113 56.5 ?29 2140 13.9 ? j18.3 16.0 + j19.0 6.26 ? j13.0 14.5 50.5 112 56.8 ?30 2170 19.5 ? j16.1 21.7 + j17.2 6.42 ? j13.3 14.4 50.5 113 57.2 ?30 f (mhz) z source ( ? ) z in ( ? ) max output power p3db z load (2) ( ? ) gain (db) (dbm) (w) ? d (%) am/pm ( ? ) 2110 10.2 ? j17.7 13.8 + j19.4 6.34 ? j13.6 12.4 51.3 134 58.1 ?36 2140 13.9 ? j18.3 19.3 + j18.8 6.62 ? j13.9 12.4 51.2 132 57.6 ?37 2170 19.5 ? j16.1 25.4 + j14.9 6.85 ? j14.3 12.3 51.2 132 57.8 ?37 (1) load impedance for optimum p1db power. (2) load impedance for optimum p3db power. z source = measured impedance presented to the input of th e device at the package reference plane. z in = impedance as measured from gate contact to ground. z load = measured impedance presented to the output of the device at the package reference plane. table 10. peaking side load pull performance ? maximum efficiency tuning v dd =28vdc,v gsb = 0.5 vdc, pulsed cw, 10 ? sec(on), 10% duty cycle f (mhz) z source ( ? ) z in ( ? ) max drain efficiency p1db z load (1) ( ? ) gain (db) (dbm) (w) ? d (%) am/pm ( ? ) 2110 10.2 ? j17.7 9.39 + j20.4 11.1 ? j5.75 16.0 48.6 73 70.2 ?34 2140 13.9 ? j18.3 13.5 + j22.1 10.3 ? j4.94 15.9 48.4 68 70.0 ?36 2170 19.5 ? j16.1 20.4 + j21.8 9.59 ? j6.35 15.7 48.8 75 70.0 ?36 f (mhz) z source ( ? ) z in ( ? ) max drain efficiency p3db z load (2) ( ? ) gain (db) (dbm) (w) ? d (%) am/pm ( ? ) 2110 10.2 ? j17.7 12.2 + j21.0 11.6 ? j8.27 13.9 49.8 95 69.7 ?42 2140 13.9 ? j18.3 17.9 + j21.8 11.2 ? j7.51 13.8 49.6 91 69.3 ?44 2170 19.5 ? j16.1 25.6 + j19.4 10.4 ? j7.20 13.7 49.5 89 69.4 ?45 (1) load impedance for optimum p1db efficiency. (2) load impedance for optimum p3db efficiency. z source = measured impedance presented to the input of th e device at the package reference plane. z in = impedance as measured from gate contact to ground. z load = measured impedance presented to the output of the device at the package reference plane. input load pull tuner and test circuit device under test z source z in z load output load pull tuner and test circuit
a2t21h140--24sr3 11 rf device data nxp semiconductors p1db ? typical peaking side load pull contours ? 2140 mhz imaginary ( ? ) 4 68 16 2 real ( ? ) ? 2 10 ?4 ?6 ?8 ?10 ?12 ?14 ?16 12 14 note: = maximum output power = maximum drain efficiency p e gain drain efficiency linearity output power figure 16. p1db load pull output power contours (dbm) figure 17. p1db load pull efficiency contours (%) figure 18. p1db load pull gain contours (db) figure 19. p1db load pull am/pm contours ( ? ) imaginary ( ? ) 4 68 16 2 real ( ? ) ? 2 10 ?4 ?6 ?8 ?10 ?12 ?14 ?16 12 14 imaginary ( ? ) 4 68 16 2 real ( ? ) ?2 10 ?4 ?6 ?8 ?10 ?12 ?14 ?16 12 14 imaginary ( ? ) 4 68 16 2 real ( ? ) ?2 10 ?4 ?6 ?8 ?10 ?12 ?14 ?16 12 14 e 47.5 49 46.5 48 47 48.5 49.5 50 p 48 49 e p 56 68 62 64 54 66 58 60 p e 15 14.5 14 12 13.5 13 15.5 p e ?44 ?30 ?42 ?40 ?38 ?36 ?34 ?32
12 rf device data nxp semiconductors a2t21h140--24sr3 p3db ? typical peaking side load pull contours ? 2140 mhz note: = maximum output power = maximum drain efficiency p e gain drain efficiency linearity output power figure 20. p3db load pull output power contours (dbm) figure 21. p3db load pull efficiency contours (%) figure 22. p3db load pull gain contours (db) figure 23. p3db load pull am/pm contours ( ? ) imaginary ( ? ) 4 68 16 2 real ( ? ) ? 2 10 ?4 ?6 ?8 ?10 ?12 ?14 ?16 12 14 imaginary ( ? ) 4 68 16 2 real ( ? ) ? 2 ?4 ?6 ?8 ?10 ?12 ?14 ?16 12 14 imaginary ( ? ) 4 68 16 2 real ( ? ) ? 2 10 ?4 ?6 ?8 ?10 ?12 ?14 ?16 12 14 imaginary ( ? ) 4 68 16 2 real ( ? ) ?2 10 ?4 ?6 ?8 ?10 ?12 ?14 ?16 12 14 imaginary ( ? ) 4 68 16 2 real ( ? ) ?2 10 ?4 ?6 ?8 ?10 ?12 ?14 ?16 12 14 48 49.5 50.5 47 p e 50 49 51 48.5 47.5 64 56 66 62 58 54 p e 68 12.5 13 12 p e 11 10 13.5 11.5 ?46 ?44 p e ?40 ?42 ?52 ?50 ?48 ?38 ?36 60
a2t21h140--24sr3 13 rf device data nxp semiconductors package dimensions
14 rf device data nxp semiconductors a2t21h140--24sr3
a2t21h140--24sr3 15 rf device data nxp semiconductors product documentation, software and tools refer to the following resources to aid your design process. application notes ? an1907: solder reflow attach method for high power rf devices in plastic packages ? an1955: thermal measurement methodology of rf power amplifiers ? an3789: clamping of high power rf transistors and rfics in over--molded plastic packages engineering bulletins ? eb212: using data sheet impedances for rf ldmos devices software ? electromigration mttf calculator ? .s2p file development tools ? printed circuit boards to download resources specific to a given part number: 1. go to http://www .nxp.com/rf 2. search by part number 3. click part number link 4. choose the desired resource from the drop down menu revision history the following table summarizes revisions to this document. revision date description 0 mar. 2017 ? initial release of data sheet
16 rf device data nxp semiconductors a2t21h140--24sr3 information in this document is provided solely to enable system and software implementers to use nxp products. there are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. nxp reserves the right to make changes without further notice to any products herein. nxp makes no warranty, repr esentation, or guarantee r egarding the sui tability of its products for any particular purpose, nor does nxp assume any li ability arisi ng out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or i ncidental damages. ?typical? parameters that may be provided in nxp data sheets and/ or specifications can and do vary in different applications, and actual performance may vary over time. all operating parameters, including ?typicals,? must be validated for each customer application by customer?s technical experts. nxp does not convey any license under its patent rights nor the rights of others. nxp sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/ salestermsandconditions . nxp, the nxp logo, freescale, the freescale logo, and airfast are trademarks of nxp b.v. all other product or service names are the property of their respective owners. e 2017 nxp b.v. how to reach us: home page: nxp.com web support: nxp.com/support document number: a2t21h140--24s rev. 0, 03/2017


▲Up To Search▲   

 
Price & Availability of A2T21H140-24SR3

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X